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In data analysis, we often ask the following questions: 
Which is the best model to describe our data? Which is the 
best statistical index to judge the goodness of fit? How do we 
choose among competing models? There are no simple answers 
to these questions. Here we attempt to provide agronomists 
with a general framework on how to approach these questions 
appropriately. Our specific objectives are: (i) to provide a suc-
cinct overview of nonlinear models and to develop a guideline 
to understand the family of functions used in agricultural 
applications; (ii) to indicate techniques to modify nonlinear 
models and how to cope with multiple nonlinear models; (iii) 
to discuss key methodological issues on parameter estimation, 
model performance, and comparison; and (iv) to demonstrate 
step-by-step analysis of experimental data using a nonlinear 
regression model. The structure follows the flow diagram in Fig. 
1. We start with the definition of nonlinear regression models 
and discuss their main advantages and disadvantages. Then we 
present 77 nonlinear functions (including those in supplemental 
tables) with references to applications in agriculture. We offer an 
updated overview of methodologies to fit models, choose starting 
values, assess goodness of fit, select the best models, and evaluate 

residuals. Finally, we reanalyze experimental data on biomass 
growth with time (Danalatos et al., 2009).

NONLINEAR REGRESSION MODELS
Definition

In general, statistical models used in agricultural applications 
can be described with the following notation:

( ),y f x= q +e

where y is the response variable, f is the function or model, x 
are the inputs, q denotes the parameters to be estimated, and 
e is the error. Each parameter can be evaluated for whether it 
is linear or not: if the second derivative of the function with 
respect to a parameter is not equal to zero, then the parameter 
is nonlinear. Thus a given function ( f ) can have a mix of linear 
and nonlinear parameters.

Why Should We Use Nonlinear Models?

The main advantages of nonlinear models are parsimony, 
interpretability, and prediction (Bates and Watts, 2007). In 
general, nonlinear models are capable of accommodating a vast 
variety of mean functions, although each individual nonlinear 
model can be less flexible than linear models (i.e., polynomials) 
in terms of the variety of data they can describe; however, non-
linear models appropriate for a given application can be more 
parsimonious (i.e., there will be fewer parameters involved) 
and more easily interpretable. Interpretability comes from the 
fact that the parameters can be associated with a biologically 
meaningful process. For example, one of the most widely used 
nonlinear models is the logistic equation (Eq. [2.1] in Table 1). 
This model describes the pervasive S-shaped growth curve. The 
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parameters have a clear meaning (see Table 1) and units associ-
ated with their definition. The asymptotic parameter (Yasym) 
has units equal to the response variable (Y), the inflection point 
(tm) has units equal to the independent variable (t), and the 
parameter that determines the steepness of the curves (k) has 
units equal to t. This last parameter can be interpreted as the 
time (when t is time) that it takes to move from the inflection 
point to approximately 0.73 of the asymptotic value. A compet-
ing polynomial model used to describe the same data would 
have the disadvantages that more parameters would be needed 
(more than just three) and that the parameters would not be 
easily interpretable (Pinheiro and Bates, 2000). For example, 
what would be the interpretation of the parameters in a five-
degree polynomial?

The final advantage of using nonlinear regression models is 
that their predictions tend to be more robust that competing 
polynomials, especially outside the range of observed data (i.e., 
extrapolation). Nonlinear regression models, however, come at 
a cost. Their main disadvantages are that they can be less flex-
ible than competing linear models and that generally there is 
no analytical solution for estimating the parameters. The first 
point has as a consequence that the choice of model is crucial. 

It is tempting to then try a large library of functions and choose 
the model with the lowest error; however, it is almost always 
better to choose a model based on whether it has been used suc-
cessfully in similar applications and has biologically meaning-
ful parameters (e.g., Table 1).

The lack of an analytical solution has two practical conse-
quences. First, a numerical method needs to be used to find 
estimates for the parameters, and this implies that convergence 
of the algorithm needs to be checked (Fig. 1). A lack of conver-
gence often results from the second consideration, which is that 
these numerical methods require starting values. Choosing 
a model with biologically meaningful parameters makes the 
process of choosing starting values easier because the starting 
values can usually be easily determined from visual inspection 
of the data (see below).

TYPICAL NONLINEAR MODELS 
AND APPLICATION EXAMPLES

Choosing competing models for an application is not always 
a simple task. We have developed a reference table as a guide-
line to understand the family of functions used in agricultural 
applications. Table 1 presents 27 common nonlinear equations, 

Fig. 1. Suggested work flow in the nonlinear regression analysis. Thick arrows indicate major steps, thin arrows indicate substeps, and dashed arrows 
indicate feedback in nonlinear regression. The shaded part is optional and can be ignored in simple cases.  
(Abbreviations: GLMs, generalized linear models; LRT, likelihood ratio test; AIC, Akaike information criterion; BIC, Bayesian information criterion.) 
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Table 1. Nonlinear regression models. For example fits, see supplemental figures.

Eq.
Name and/or 

reference Form Parameter definition

Group I—Exponential

[1.1] Exponential decay Y = Yoexp(–kt) Y is the response variable (e.g., soil organic matter), t is the explanatory 
variable (e.g., time), Yo is the initial or the maximum Y value, k is a rate 

constant that determines the steepness of the curve
[1.2] Exponential gives 

rise to maximum
Y = Yo[1 – exp(–kt)] 

Group II—Sigmoid functions

[2.1] Logistic (Verhulst, 
1838)

Y = Yasym/{1 + exp[–k(t – tm)]} Y is the response variable (e.g., biomass), t is the explanatory variable 
(e.g., time), Yasym or Ymax is the asymptotic or the maximum Y value, 

respectively, tm is the inflection point at which the growth rate is 
maximized, k controls the steepness of the curve, v deals with the 

asymmetric growth (if v = 1, then Richards’ equation becomes logistic), 
a and b are parameters that determine the shape of the curve, te is the 
time when Y = Yasym, tc is the critical time for a switch-off to occur (e.g., 

critical photoperiod), n is a parameter that determines the sharpness 
of the response

[2.2]† Richards (1959) Y = Yasym/{1 + v exp[–k(t – tm)]}1/v

[2.3] Gompertz (1825) Y = Yasymexp{–exp[–k(t – tm)]} 

[2.4] Weibull (1951) Y = Yasym[1 – exp(–atb)] 

[2.5]‡ Beta (Yin et al., 
2003a)

e e m

e
max

e m

(

e

/ )

1
t t t

t t tY Y
t t t
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[2.6]§ Hill (switch-off) 
function

Y = tc
n/(tc

n + tn) 

Group III—Photosynthesis

[3.1] Blackman (1905) Y = min(Yasym,aI) – Rd Y is the response variable (net photosynthesis), I is the explanatory 
variable (irradiance), Yasym is the asymptotic Y value, a is the initial slope 

of the curve at low I levels, Rd is the dark respiration, q is a dimensionless 
curvature parameter (when q = 1, Eq. [3.4] is equivalent to Eq. [3.1], and 

when q ® 0, Eq. [3.4] is equivalent to Eq. [3.3])

[3.2]¶ Asymptotic 
exponential

Y = Yasym[1 – exp(–aI/Yasym)] – Rd

[3.3]¶ Rectangular 
hyperbola

Y = aIYasym/(Yasym + aI) – Rd

[3.4]¶# Nonrectangular 
hyperbola

( )2

asym asym asym

d

4

2

Y aI Y aI aIY
Y R

+ - + - q
= -

q

[3.5] Modified logistic 
(Sinclair and Horie, 

1989)

Y = Yasym(2/{1 + exp[–k(N – Nmin)]} – 1) Y is the response variable (light-saturated net photosynthesis), N is 
the explanatory variable (leaf N), Yasym is the asymptotic Y value, k 

determines the curvature of the curve, Nmin is the N value at or below 
which Y = 0

[3.6]†† Farquhar et al. 
(1980)

( )
( )

( )i *cmax i *
day

i *i mc mo

min ,
4 81
J CV C

Y R
CC K O K

é ù-G-Gê ú= -ê ú+ G+ +ê úë û

Y is the response variable (net photosynthesis), Ci is the explanatory 
variable (intercellular CO2 concentration), Vcmax is the maximum carbox-

ylation capacity, G* is the CO2 compensation point in the absence of 
Rd, Kmc and Kmo are Michaelis–Menten coefficients of Rubisco for CO2 
and O2, respectively, O is the partial pressure of O2 (= 21 kPa), J is the 

photosystem II electron transport rate, Rday is the dark respiration 
occurring in the light

Group IV—Temperature dependencies

[4.1] van’t Hoff (1898)
(known as the Q10 

function)
Y = Q10

ref( )/10T T- Y is the response variable (e.g. respiration), T is the explanatory variable 
(temperature), Tref is a reference temperature at which Y = 1, Q10 is the 

factor by which the rate of a process (respiration) increases for each 
10°C temperature increase, E is the activation energy that determines 
the increase in temperature response, R is the universal gas constant 
(= 8.314 J K–1 mol–1), D is the deactivation energy that determines 

the decrease in the temperature response, S is the entropy term that 
determines the transition state of the curve, Eo is an activation-energy-
like parameter that is temperature adjusted, Tx is a fitted temperature 
parameter (in K), Tmin is the base or minimum temperature for Y = 0

[4.2] Arrhenius (1889) Y = exp{E/R[1/(Tref + 273) – 1/(T + 273)]} 

[4.3]‡‡ Modified Arrhenius

( ) ( ){ }
( ) ( ){ }
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[4.4] Lloyd and Taylor 
(1994)

Y = exp{Eo[1/(Tref + 273 – Tx) – 1/(T + 273 – Tx)]} 

[4.5] Ratkowsky et al. 
(1982)

Y = (T – Tmin)
2/(Tref – Tmin)

2

Group V—Peak or bell-shaped curves

[5.1] Beta
(Yin et al. 1995) o b c o(

c b

c o o b

)/( )

 
cT T T TT T T TY

T T T T

− − − −  =    − −    

Y is the response variable (e.g., rate of development), T is the explanatory 
variable (temperature), To is the optimum temperature for maximum 
Y, Tb is the base or minimum temperature for Y = 0, Tc is the ceiling 

or maximum temperature for Y = 0, c is a curvature parameter 
(default c = 1)

[5.2]§§ Bell curve Y = Yasymexp[a(X – Xo)2 + b(X – Xo)3] Y is the response variable, X is the explanatory variable, Yasym is the 
asymptotic maximum Y value, Xo is the position of the center of the peak 
(Yasym), a (default = 0.5 for the Gaussian function), and b are coefficients 

controlling the width of the bell

[5.3] Gaussian function Y = Yasymexp{–0.5[(X – Xo)/b]2}

(continued)
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and Supplementary Tables S2 to S6 supplement these with 
45 additional equations. We classified the equations into six 
groups based on a combination of statistical form and use in 
the agricultural domain. All equations have been used in agri-
cultural applications, and most of the parameters have an inter-
pretable meaning (see supplementary figures also). The variety 
of equations presented in Table 1 reflects well the fact that one 
equation does not suit all processes.

Group I—Exponential

The exponential decay and exponential gives rise to maxi-
mum functions (Eq. [1.1] and [1.2], Table 1) find applications 
in a wide spectrum of soil and plant sciences. They are com-
monly used to describe light and N vertical distributions 
within plant canopies (Monsi and Saeki, 2005), N2O emission 
response to N fertilizer (e.g., Hoben et al., 2011), cumulative 
soil respiration (e.g., Gillis and Price 2011), photoperiodic sen-
sitivity (e.g., Wang and Engel, 1998), temperature or moisture 
responses to nitrification (e.g., Ma and Shaffer, 2001), water 
infiltration rate (Horton, 1940), and first-order kinetics. They 
are simple equations with one major unknown, the rate con-
stant (k), which is also termed the extinction coefficient in crop 
physiology. The ratio ln(2)/k is of importance in soil science 
because it denotes the mean residence time (e.g., soil organic 
matter). Equation [1.1] provided the starting point to develop 
case-specific nonlinear functions. Yin et al. (2000, 2003b) 
established a nonlinear function to describe leaf area index 
development as a function of canopy N content (Eq. [1.8] in 
Supplementary Table S1). Johnson et al. (2010) developed a 
flexible nonlinear function for the protein (N) vertical dis-
tribution within plant canopies (Eq. [1.9] in Supplementary 
Table S1). In soil science, Andren and Paustian (1987) and 
Gillis and Price (2011) extended Eq. [1.1] to better describe the 

decomposition of straw residue and biochar, respectively (see 
Supplementary Table S1). Lastly, Eq. [1.1] as well as expolinear 
functions (viz. Eq. [2.16] and [2.15] in Supplementary Table 
S2) were also applied to describe the initial parts of growth 
curves but not the entire growth curves because the growth 
profile often reaches an asymptotic value.

Group II—Sigmoid Curves

Sigmoid curves (mathematical functions having an S shape) 
are another important group of nonlinear models. These models 
are often applied to describe plant height, weight, leaf area index, 
or seed germination as a function of time, N application rate, 
herbicide dose, etc. (e.g., Gan et al., 1996; Miguez et al., 2008). 
Sigmoid equations are also used as 0–1 modifiers in process-
based models to incorporate moisture availability or soil pH, etc., 
effects on soil N transformation processes (e.g., McGechan and 
Wu, 2001) and also as a switch-off function in studies assessing 
plant photoperiodic sensitivity (e.g., Amaducci et al., 2008). 
Table 1 presents common sigmoid functions and Supplementary 
Table S2 provides additional sigmoidal equations, providing 
increased flexibility (e.g., when maximum growth or the inflec-
tion point is achieved at the start or the end of growth period). 
Additional equations can be found in Zwietering et al. (1990), 
Zeide (1993), Leduc and Goelz (2009), and many statistical text-
books or software manuals (e.g., SigmaPlot, JMP, TableCurve).

In general, the suitability of a sigmoid equation to estimate 
maximum rate of increase or optimum x level for maximizing 
the y value is an important part of its function (Birch, 1999; 
Yin et al., 2003a). Each function has its advantages and disad-
vantages (for a discussion, see Birch, 1999; Yin et al., 2003a), 
and it is up to the researcher to select the most appropriate one 
to fit the experimental data. The logistic equation, Eq. [2.1], 
describes symmetric growth having an inflection point at half 

Eq.
Name and/or 

reference Form Parameter definition

Group VI—Other nonlinear equations

[6.1] Power Y = aXb Y is the response variable, X is the explanatory variable, a and b are 
parameters that define the shape of the curve and the magnitude of the 

Y value
[6.2] Modified hyperbola Y = aX/(1 + bX) 

[6.3] Michaelis–Menten Y = mX/(X + Csat) Y is the response variable (e.g., denitrification rate), X is the explanatory 
variable—the substrate (e.g., NO3), m is the rate constant, Csat is the half-

saturation constant

[6.4]¶¶ Rational function
Y = a1X

2a
/(1 + a3X

4a
)

Y is the response variable, X is the explanatory variable, a1 and a3 
are parameters defining the magnitude of the Y value, a2 and a4 are 
parameters defining the shape of the curve (if a2 = a4 + 1, then the 
equation shows a near-linear response; if a2 = a4, then the equation 

becomes a hyperbola; if a2 < a4, then the equation takes a bell shape; if a2 
> a4 or a4 = 0, then the equation becomes exponential; if a2 = 0, then the 

equation becomes exponential decay

[6.5] Ricker curve Y = a1X exp(–a2X) Y is the response variable, X is the explanatory variable, a1 and a2 are 
parameters that control both the height and the width of the right skew 

of the “bell”

† The maximum growth rate for the Richards equation is given in Birch (1999).
‡ The maximum growth rate for the Beta equation is given in Yin et al. (2003a).
§ Cited in Amaducci et al. (2008).
¶ Cited in Goudriaan (1979).
# Goudriaan (1979) and Johnson et al. (2010) used the nonrectangular hyperbola to describe the photosynthetic rate response to CO2.
†† This is simplified version of the Farquhar model.
‡‡ The optimum temperature for this equation is given in Medlyn et al. (2002).
§§ Cited in Hammer et al. (2009).
¶¶ Cited in Bril et al. (1994).

Table 1. Continued.
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the final size. The Gompertz equation, Eq. [2.3], has an inflec-
tion point that is controlled by its asymptotic value and is at 
about one-third (1/e = 0.3679), while others like the Richards 
or Weibull or beta have more flexibility in dealing with asym-
metric growth (the inflection point can be at any x value).

Having a flexible inflection point is another important fea-
ture of a sigmoid curve. For that, Birch (1999), for example, 
modified the logistic equation (Eq. [2.1]) to deal with asymmet-
ric growth by adding an extra shape parameter. When growth is 
known to decrease after a certain period of time, then the beta 
function (Eq. [2.5]) might be a better option (see supplemen-
tary figures). On the other hand, Eq. [2.5] might not accurately 
predict initial growth and, in cases when the initial phase is 
very important, different versions of the beta function should 
be used (see Eq. [2.11] in Supplementary Table S2 and example 
below). It is important to note that all sigmoid equations pre-
sented in Table 1 (except Eq. [2.4] and [2.5]) assume an initial 
Y value close to zero at time zero, which is reasonable in most 
cases, e.g., at planting, the biomass weight is very close to zero.

Group III—Photosynthesis

Photosynthesis is the most important biological process involved 
in plant growth, and its rate is influenced by irradiance, temperature, 
N availability, the vapor pressure deficit, and CO2 concentration. 
Different nonlinear functions have been developed to describe the 
photosynthesis response to different environmental variables. Func-
tions to describe the photosynthesis response to irradiance have 
been researched the most (Jassby and Platt, 1976; Goudriaan, 1979). 
All equations assume that dark respiration (Rd) is independent of 
the light level. Among the equations presented in Table 1, Black-
man (Eq. [3.1]) is the simplest one, and the asymptotic exponential 
(Eq. [3.2]) and the nonrectangular hyperbola (Eq. [3.4]) are the 
most common. The rectangular hyperbola (Eq. [3.3], also termed 
the Michaelis–Menten equation) is used less frequently because it 
reaches saturation faster than photosynthesis actually does.

Currently, the scientific discussion on the photosynthetic 
capacity (Yasym) and efficiency (a) of different plant species is 
based on the comparison of nonlinear regression estimates; for 
this reason, caution should be exercised because similar esti-
mates from different equations can result in different responses 
(Fig. 2). Equation [3.2] is a simple three-parameter equation 
widely used in light-driven process-based models like SUCROS 
and Hybrid-maize (Goudriaan and van Laar, 1994; Yang et 
al., 2004). Equation [3.4] offers more flexibility and is more 
accurate than Eq. [3.2] at the cost of one extra parameter (i.e., 
q, the curvature parameter). When q = 1, Eq. [3.4] becomes the 
Blackman equation (Eq. [3.1]), and when q approaches zero, Eq. 
[3.4] becomes the rectangular hyperbola equation (Eq. [3.3]). 
Equation [3.4] is the reference equation when the biochemical 
model of Farquhar et al. (1980) or Collatz et al. (1992) is used in 
modeling studies. New equations are still being developed and 
tested (e.g., Eq. [3.7] in Supplemental Table S3).

The photosynthesis response to CO2 has been quantified 
empirically using a nonrectangular hyperbola (Goudriaan, 
1979; Johnson et al., 2010) and mechanistically using a bio-
chemical model (Farquhar et al., 1980). The biochemical model 
is based on Michaelis–Menten kinetics for substrate-limited 
growth and the law of minimum between carboxylation and 
electron transport rates (Eq. [3.6], Table 1). Although its com-
putation is laborious, this model has found large acceptance. 
For more details on that model, see the original publications 
(Farquhar et al., 1980; von Caemmerer and Farquhar, 1981) 
and model application studies (Medlyn et al., 2002; Archon-
toulis et al., 2012). The photosynthesis response to leaf N, 
which is strongly related to the Rubisco content, can be mod-
eled using a modified logistic equation proposed by Sinclair 
and Horie (see Eq. [3.5], Table 1), while alternatives exist (Eq. 
[3.8] in Supplemental Table S3). The photosynthesis response 
to water stress is usually described by sigmoid functions at the 
leaf level. For instance, Vico and Porporato (2008) utilized a 

Fig. 2. Nonlinear models for describing photosynthesis response to irradiance (left) and respiration response to temperature (right). Equations are 
given in Table 1. The following parameter values were used for these plots: asymptotic maximum response variable (Yasym) = 30 mmol CO2 m

–2 s–1, 
initial curve slope (a) = 0.05 mol CO2 mol–1 photons, curvature parameter (q) = 0.7, dark respiration (Rd) = 2 mmol CO2 m

–2s–1; increase in respira-
tion for each 10°C temperature increase (Q10) = 2, reference temperature (Tref) = 20°C, universal gas constant (R) = 8.314 J K–1 mol–1, activation 
energy (E) = 65,000 J mol–1, entropy (S) = 650 J K–1 mol–1, deactivation energy (D) = 207,000 J mol–1, temperature-adjusted activation-energy-like 
parameter (Eo) = 350 K, fitted temperature parameter (Tx) = 225 K, and minimum temperature (Tmin) = 0°C. Note that at the reference temperature 
of 20°C, respiration = 1. The optimum temperature for the modified Arrhenius equation is: Topt = D/{S – R ln[E/(D – E)]} –273 = 42.3°C.
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Weibull-type curve (Eq. [3.9] in Supplemental Table S3). The 
photosynthesis response to a vapor pressure deficit has been 
described by an exponential decay function (e.g., Osório et al., 
2006) but usually more sophisticated approaches have been 
used (Collatz et al., 1992; Yin and Struik, 2009). The photo-
synthesis response to temperature is discussed below.

Group IV—Temperature Dependence

A multitude of nonlinear regression models have been pro-
posed and tested for modeling the temperature dependence 
of various soil and plant processes (Lloyd and Taylor, 1994; 
Kätterer et al., 1998; Davidson et al., 2006; Shibu et al., 2006; 
Portner et al., 2010). These include power, logarithmic, exponen-
tial, sigmoid, and bell-shape functions (Table 1; Supplemental 
Table S4). The van’t Hoff or Q10 function (Q10 is the factor by 
which the rate of a process increases for each 10°C temperature 
increase) has found application in many studies, particularly in 
those addressing leaf or soil respiration rates. A Q10 of 1 indi-
cates no temperature effect. The Q10 value commonly ranges 
from 1.4 to 4.9 (Tjoelker et al., 2001; Atkin et al., 2005). In the 
Arrhenius equation, the Q10 term has been replaced by the acti-
vation energy. Both equations are equivalent, producing similar 
temperature responses (Fig. 2); however, it should be noted that 
both Q10 and E coefficients are temperature-range dependent. 
Usually, narrow temperature measurement ranges result in high 
and sometimes unrealistic Q10 or E estimates. Lloyd and Taylor 
(1994) noticed limitations of these two functions (i.e., the rate 
of reaction is not constant across temperatures) and developed a 
new equation (see Eq. [4.4]) to fit extensive literature data.

The above temperature functions describe a monotonic 
increase (Fig. 2). The rate of a process probably increases to an 
optimum temperature point and then drops (in reality, due 
to the lack of appropriate data, the drop is not always appar-
ent). New equations or modifications of existing models have 
been developed to account for this. For example, the modified 
Arrhenius function, when compared with the Arrhenius equa-
tion, includes an additional two-parameter term (see D and S 
in Eq. [4.3] and Fig. 2) to capture the decline in the rate of a 
process at very high temperature (e.g., the electron transport 
rate). If one of the two additional parameters is set to zero, then 
Eq. [4.3] becomes Eq. [4.2] (see also supplemental figures). 
This equation is “fragile” and requires careful parameterization 
(Medlyn et al., 2002; Archontoulis et al., 2012).

Johnson et al. (2010) argued that temperature functions 
based on the activation energy of chemical reactions are quite 
complex and difficult to apply routinely. They used a modified 
beta function to describe the photosynthesis response to tem-
perature (Eq. [4.10] in Supplemental Table S4). Kirschbaum 
(1995) used a modified exponential temperature function (see 
Eq. [4.9] in Supplemental Table S4) that provides a peak pat-
tern to fit soil organic matter decomposition data. Additional 
(but difficult to interpret) peak temperature response functions 
were reported in Portner et al. (2010).

Group V—Bell Curves

In addition to temperature dependencies of photosynthesis, 
the bell-shaped or peak functions have been applied in agricul-
tural science to describe the rate of phenological development 
as a function of temperature (e.g., Yin et al., 1995), the size of 

a leaf as a function of its rank in a plant (e.g., Hammer et al., 
2009) or soil moisture effects on N2O emissions (e.g., Rafigue 
2011). Table 1 lists three important equations. More applica-
tion examples and different types of bell-curve equations can 
be found in Ma and Shaffer (2001) and in Supplementary 
Table S5. In process-based simulation models, researchers have 
approximated a bell-shaped response (viz. rate of development) 
with two-, three-, or four-segment (broken) linear regression 
models (e.g., APSIM; Keating et al., 2003). Typically, these seg-
mented models should be fit using nonlinear methods as well.

Group VI—Others

In allometric studies, the relations that exist among the 
growth rates of different plant components are quantified by 
means of regression analysis. Given the large variability that 
exists among plant species and plant components, numerous 
nonlinear models have been utilized including power (Eq. [6.1], 
e.g., plant N concentration vs. biomass weight), hyperbolic 
(Eq. [6.2]), and sigmoid curves (e.g., Eq. [3.1]). For application 
examples, see Vega et al. (2000), Vega and Sadras (2003), and 
Archontoulis et al. (2010). The Michaelis–Menten equation 
(Eq. [6.3]) is well known and routinely applied to quantify the 
rate of a process (i.e., denitrification) that is dependent on the 
substrate (i.e., NO3). In contrast, Eq. [6.4] is not as common in 
agronomy, but it appears to be very flexible, taking many forms 
from linear to exponential and bell curved (see supplemental 
figures). It was applied to model temperature effects on soil N 
mineralization (Bril et al., 1994). The last equation in Table 1 
is the Ricker function (Eq. [6.5]), an option for hump-shaped 
patterns that are skewed to the right (Bolker, 2008).

Manipulating or Combining Nonlinear Functions

Sometimes there is a need to modify a “standard” nonlinear 
function to fit a set of data. This has led to the development of 
numerous versions of a standard equation (e.g., Birch, 1999; 
Tsoularis, 2001; Supplemental Tables S1–S3). Using the 
simplest form of the Michaelis–Menten hyperbolic function 
(see Eq. [7.1] in Fig. 3), we illustrate simple modification tech-
niques. Equation [7.1] starts at zero when x = 0 and increases 
up to an asymptotic value of 1 as x increases. We can change 
the horizontal scale of this function by multiplying the variable 
x by a constant parameter, b, which is called a scale parameter 
(Bolker, 2008). If b > 1, then y saturates faster and if 0 < b < 1, 
then y saturates more slowly (Eq. [7.2] in Fig. 3). We can change 
the vertical scale of the function by introducing a new param-
eter, a (Eq. [7.3] in Fig. 3). In this case, the asymptote moves 
from 1 to a. We can shift the whole curve to the right or the 
left by subtracting or adding a new parameter, c, to the x vari-
able (Eq. [7.4] in Fig. 3), which is called the location parameter 
(Bolker 2008). Similarly we can shift the whole curve upward 
or downward by adding or subtracting a new constant value, 
d (Eq. [7.5] in Fig. 3). Lastly, we can replace x with xk, where k 
is a shape parameter, and then the equation takes many forms 
(exponential, sigmoid, etc.; not shown). A close example to 
the last modification is Eq. [2. 6] in Table 1. When we modify 
nonlinear functions, we should add parameters that have an 
interpretable meaning.

When nonlinear functions are extended or combined to 
describe a phenomenon, we should be aware that there is an 

 14350645, 2015, 2, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.2134/agronj2012.0506, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



792 Agronomy Journa l  •  Volume 107,  I s sue 2 •  2015

upper limit in the number of parameters that can be estimated 
from standard nonlinear regression analysis. This depends on 
the complexity of the model and the number of data points. For 
example, to fit growth curves with three parameters, we need at 
least four data points. When a process is described by a combina-
tion of nonlinear models (e.g., Farquhar model of photosynthesis 
or generic simulation crop models), then a stepwise parameter-
ization method is usually applied. For application examples, see 
Miguez et al. (2009) and Archontoulis et al. (2012).

FITTING NONLINEAR MODELS
Presently there are many statistical software packages avail-

able for fitting nonlinear models (e.g., SAS, R, JMP, GenStat, 
MatLab, Sigmaplot, OriginLab, and SPSS). Nonlinear param-
eter estimates can be obtained using different methods (Bates 
and Watts, 2007); the most common are: (i) ordinary least 
squares, which minimizes the sum of squared error between 
observations and predictions, and (ii) the maximum likelihood 
method, which seeks the probability distribution that makes 
the observed data most likely. For non-normal data such as 
binomial or counts, generalized (non)linear models should be 
used (Lindsey, 2001; Huet et al., 2003; Gbur et al., 2012). Most 
problems encountered during the use of standard nonlinear 
regression software functions are due to a poor choice of com-
peting models or an incorrect equation or starting values (Fig. 
1). The choice of estimation method can affect the parameter 
estimates (Ruppert et al., 1989), but in general, estimates from 
least squares and maximum likelihood methods tend to dif-
fer only when the data are not normally distributed and are 
approximately identical when the data follow a normal distri-
bution (Myung, 2003).

Choosing Starting Values

All the procedures for nonlinear parameter estimation require 
initial values. The choice of values will influence the convergence 
of the estimation algorithm, in the worst case yielding no conver-
gence and in the best case convergence in a few iterations (Ritz 

and Streibig, 2005); however, there is no standard procedure for 
getting initial estimates. We indicate five practical methods:

1. If the model has parameters with biological meaning, then 
use information from the literature.

2. Use graphical exploration (see the example below and Fig. 
4).

3. Transform the nonlinear model into a linear model. For 
instance logarithmic transformation of Eq. [1.1] yields 
a linear equation (viz. lnY = Yo – kt) in which rough 
estimates of the parameter values can be easily obtained by 
linear regression. This method is recommended for getting 
initial estimates and to detect deviations from linearity, 
but these estimates may also be used as the final estimates 
(Ruppert et al., 1989). For more transformation examples, 
see Zeide (1993), Singh (2006), and Portner et al. (2010).

4. In the case where no clear guidelines exist for choosing starting 
values, the recommendation is to use a grid search or “brute 
force” approach (e.g., PROC NLIN in SAS or the nls2 
package in R). This grid search can be done by generating an 
extensive coverage of possible parameter values (and their 
combinations) and then evaluating the model at each one of 
these parameter combinations. The numerical method can 
then be used starting with the combination that resulted in 
the best fit (lowest mean squared error). The hope is that an 
extensive enough coverage of the parameter space will provide 
a combination of parameters that will result in an adequate fit.

5. Use prespecified algorithms. This approach is specific to a 
given equation and can be used to calculate starting values 
for a given data set (e.g., Pinheiro and Bates, 2000; Ritz 
and Streibig, 2008).

Checking Algorithm Convergence

After the initial attempt at fitting a nonlinear model, we rec-
ommend that algorithm convergence is evaluated (Fig. 1). Con-
vergence is achieved when a measure (such as the relative offset or 
maximum change among parameter estimates; Bates and Watts, 
2007) is below a certain threshold value (e.g., 10–5), meaning 

Fig. 3. Example of a nonlinear model modification. Starting with Eq. [7.1], the parameters a, b, c, and d were added step by step to Eq. [7.1], resulting 
in four new equations: Eq. [7.2–7.5]. Horizontal or vertical arrows in the figure panel indicate how the additional parameters affected the model.
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that the algorithm has found a “best” solution (Fig. 1). If con-
vergence is not achieved, the most likely problems are a poor 
choice of starting values or the selected model is not well suited 
to describe the data. If convergence is achieved, the next step is to 
evaluate whether the parameter estimates are within a reasonable 
range. This requires not only evaluating the point estimates but 
also their standard errors. Unusually large standard errors are a 
sign of convergence problems, even if convergence was apparently 
achieved in the previous step. If no problems were encountered 
up to this point, the analysis can continue by assessing model 
assumptions and simplifying the model.

Evaluating Model Assumptions

When we are dealing with one model, the next step is to 
evaluate key model assumptions: normally distributed errors, 
independent errors, and homogeneous variance for the errors 
(Fig. 1). This step and the following steps are not unique to 
nonlinear models but are common to all linear models. Sub-
stantial deviations from the assumptions could result in bias 
(inaccurate estimates), distorted standard errors, or both (Ritz 
and Streibig, 2008). Violations of these assumptions can be 
detected from an analysis of the residuals by means of graphical 
procedures and formal statistical tests. For a thorough analysis, 
see Ritz and Streibig (2008).

Briefly, to check whether the distribution of the measure-
ment errors follows normality, the standardized residual plot 
is commonly applied (Pinheiro and Bates, 2000; see also the 
example later and Fig. 5). Outliers and many extreme values are 
common causes for deviations from normality (Fig. 1). Het-
erogeneity of variance can be detected by looking at the plot of 
the fitted values over the residuals (absolute residuals, which 
are raw residuals stripped of the negative sign, or standardized 
residuals, which are raw residuals scaled by the variance; see the 
example below).

When the residual errors show a trend (e.g., increasing vari-
ability as the explanatory variable increases, Fig. 4 and 5), this 
can be addressed by modeling the variance as a function of the 

independent variable or the fitted values (Fig. 1 and 6). This 
is the case in our example (see discussion below). If variance 
heterogeneity is ignored, the parameter estimates might not 
be influenced much, but this may result in severely mislead-
ing confidence and prediction intervals (Carroll and Ruppert, 
1988). The residuals are assumed to be independent, and when 
this assumption is violated it is visually evident in a plot of 
correlations of residuals against “lag” (or units of separation in 
time or space). Typically, variables measured with time on the 
same subject (e.g., plant, animal, or soil sample) tend to result 
in autocorrelated residuals that need to be accounted for by 
modeling the variance–covariance matrix.

MODEL SELECTION CRITERIA
When we are dealing with multiple models, the question is 

how to find the best model among competing models. Depend-
ing on the structure of the models, different statistical criteria 
can be used to find the best model: F test, Akaike information 
criterion (AIC), Bayesian information criterion (BIC), or the 
likelihood ratio test (Zucchini, 2000; Burnham and Anderson, 
2002; Hoffmann, 2005; Ritz and Streibig, 2008; Lewis et al., 
2011). When models are nested (one model is a special case of 
another), any of these criteria are applicable (Fig. 1). When 
models are non-nested (models having different structures, e.g., 
Eq. [2.1] vs. Eq. [2.2]), typically the AIC and the BIC criteria 
are used (Fig. 1). From a practical point of view, however, one 
model might be preferred over another based on interpretabil-
ity and specific objectives. There needs to be a balance between 
statistical model performance and how effectively the model 
answers research questions.

For two nested models, one with two parameters (reduced, 
e.g., Eq. [2.9] in Supplementary Table S2) and one with four 
parameters (full, e.g., Eq. [2.7] in Supplementary Table S2), 
to check whether the addition of parameters has a statistically 
significant contribution to the model performance, we can use 
the F test:

Fig. 4. Biomass accumulation with time for three crops—maize (M), fiber sorghum (F), and sweet sorghum (S)—at high and low levels of agricultural 
inputs, collected in Greece in 2008.
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( ) ( )full reduced full reduced

full full

SS SS df df
SS df  

F
- -

=

where SSfull and SSreduced are the regression model sum of 
squares for the full and reduced models, respectively, and dffull 
and dfreduced are the degrees of freedom for the full and the 
reduced models, respectively. The P value can be calculated at 
dffull – dfreduced, n – p – 1, (equals 2, n – 3 for this example), 
where p is the number of parameters for the full model and n is 
the number of observations, and a decision can be made. This 
test is sometimes referred to as extra-sum-of-squares or multiple 
partial F test (Hoffmann, 2005; Ritz and Streibig, 2008). The 
F test is computed when the ordinary least squares method is 
used to fit the data (see fitting nonlinear models above). When 
the maximum likelihood method is used to fit the data, then 
the likelihood ratio test statistic (Q) is computed to compare 
nested models:

( )

æ ö÷ç ÷= ç ÷ç ÷çè ø

= -

full

reduced

full reduced

2 log

2 log log

LQ
L

L L

where Lfull and Lreduced are the likelihood functions for the 
full and reduced models, respectively. These functions are 
closely related to the residual sum of squares (see Eq. [2.4] in 
Ritz and Streibig, 2008). It is assumed that Q is approximately 
c2 distributed with n – p – dfreduced degrees of freedom (for 
details, see Ritz and Streibig, 2008). Another approach for 
model selection involves calculating the AIC and BIC values 
for each model separately:

AIC  2log 2i i iL p=- +

BIC  2log logi i iL p n=- +

where Li and pi are the likelihood and the number of param-
eters for each model, and n is the number of observations. For 
both statistical criteria, a smaller value indicates a preferable 
model. The BIC differs from the AIC only in the second term, 
which depends on n. Clearly as n increases, the BIC favors the 
simpler models (fewer parameters). This explains why some-
times the AIC and BIC indices disagree. For more information 
about these indices, see Burnham and Anderson (2002). Note 
that the likelihood ratio test, AIC, and BIC are all designed 
to compare the performance of models that have been fitted to 
data via maximum likelihood estimation (or for any model for 
which the likelihood can be calculated).

Goodness of Fit

There is no single method or index to best assess the good-
ness of fit, but there are many different methods (graphical and 
numerical) that highlight different features of the data and the 
model. Graphical comparison provides a quick visual assess-
ment of the goodness of fit. Numerical statistical indices like R2, 
adjusted R2 (R2

adj), bias, mean squared error, root mean squared 
error (RMSE), modeling efficiency (ME), concordance correla-
tion, and others (Wallach, 2006) provide the additional detail 
needed to assess the goodness of fit. Some indices measure the 
absolute error (includes units) and some others the relative error 
(excludes units). Depending on the data type, a combination of 
these indices can be used. For example, the relative term is more 
meaningful than the absolute when comparing errors based on 
different data sets. An important aspect of the statistical descrip-
tors is that some simple and very common indices like r2 and 
bias do not account for the number of parameters. The following 
numerical indices are commonly used in model evaluation:

( )
1

1
bias   ˆ

n

i i
i

Y Y
n =

= -å

Fig. 5. Standardized residuals from individually fits to all experimental units: Eq. [2.5] from Table 1 (left) and Eq. [2.11] from Supplementary Table 2 
(right). The fewer points in the left panel are because Eq. [2.5] converged in only 10 out of the 24 experimental units.
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where bias, R2, Radj
2, RMSE, and ME are numerical statisti-

cal indices, n is the number of data points, Yi and îY  are the 
observed and predicted values, respectively, Y  is the mean 
observed value, p is the number of model parameters, and 
SSresidual, and SStotal are the sum of squares for the residual, 
regression model, and total, respectively.

Although often used, the R2 does not represent a good metric 
of model performance for nonlinear models. It has several limi-
tations (e.g., it does not account for the number of parameters), 
and other measures of agreement (or combinations) should be 
used (Wallach, 2006). The main limitation of R2 is that the full 
model does not necessarily include the simpler model with one 
single parameter, as is the case with linear models.

The numerical statistical descriptors indicate the average per-
formance of the model across the sample. When the variability 
is not constant throughout the sample (e.g., biomass increase 
with time), then statistical indices do not capture the fact that 
the uncertainty is not the same at different magnitudes of the 
response variables (see the example below; Fig. 4 and 6). We 
should often be concerned with the predictive ability of the 
model, and for this, cross-validation techniques can be used 
and the mean squared error of prediction is more appropriate 
(Wallach, 2006).

EXAMPLE APPLICATION
The example follows the workflow illustrated in Fig. 1.
Data: We used data from Danalatos et al. (2009), which 

represent destructive measurements of aboveground biomass 
accumulation with time for three crops: fiber sorghum (F), 
sweet sorghum (S), and maize (M), growing in a deep fertile 
loamy soil of central Greece under two management practices: 
high and low input conditions, in 2008. High refers to weekly 
irrigation (to match 100% of maximum evapotranspiration) 
and application of 200 kg N ha–1 and low input refers to 
biweekly irrigation (approximately 50% of maximum evapo-
transpiration) and application of 50 kg N ha–1. The experiment 
was a 2 ´ 3 factorial completely randomized in four blocks. 
For more details, see Danalatos et al. (2009). With such data, 
many questions are possible. We will concentrate on three: (i) 
what is the maximum biomass accumulated by these crops, (ii) 
at what point in time was this biomass achieved, and (iii) are 
there significant treatment effects and/or interactions. This 
requires statistical determination of the effects of crop type on 
the function parameters and also the effect of input level (i.e., 
high or low). These questions are approachable through the use 
of a nonlinear model that captures the mean function and the 
structure of the data.

Graphs: Visually (Fig. 4), sorghums have greater biomass 
than maize and the maximum biomass occurs later in the 
season. No outliers have been detected at this point. Without 
a statistical analysis, however, is difficult to make sound state-
ments based solely on data visualization.

Choose candidate model: Danalatos et al. (2009) analyzed 
the data using the beta growth function (Yin et al., 2003a; Eq. 
[2.5] in Table 1). That model was selected because it captures 
the decline of biomass toward the end of the growing season 
(Fig. 4 and supplementary figure for the beta growth function). 
Also, the parameters have clear meaning and are very suitable 
to answer the research questions.

Starting values: Because for this function the parameters have 
a straightforward interpretation, starting values can be deter-
mined by visual inspection of Fig. 4. In this example, however, 
we used a prespecified algorithm that chooses the initial starting 
values automatically (see details in supplementary materials).

Fit model and convergence: Model fit was performed in the 
R package using the ordinary least squares estimation method 
(nls function). There are three crops, two levels of agronomic 
input, and four blocks, which results in 24 possible combina-
tions (experimental units). The model was fitted to every experi-
mental unit separately, and apparent convergence was obtained 
for only 10 experiment units. This indicates that some modi-
fications are needed (see below). Checking model assumptions 
can be useful for diagnosing the problem (Fig. 5). In this case, 

Table 2. Estimates of the beta growth model (Eq. [2.11] in Supplementary Table S2) used to fit the biomass data reported by Danalatos et al. (2009); P 
values < 0.05 indicate a significant effect of input levels (high or low). Note: in Eq. [2.11] the parameters biomass weight at sowing (Yb) and sowing date 
(tb) were fixed at 0 Mg ha–1 and Day of the Year (DOY) 141, respectively.

Parameter†

Maize Fiber sorghum Sweet sorghum

High Low P High Low P High Low P
Ymax 21.2 (0.99)‡ 15.4 (2.27) <0.00 38.6 (2.24) 31.8 (5.18) 0.02 43.2 (2.83) 33.9 (6.48) 0.01
tm 215.7 (1.30) 217.1 (3.33) 0.50 234.5 (1.61) 235.8 (4.11) 0.61 239.4 (1.53) 240.0 (3.81) 0.79
te 248.0 (1.79) 248.8 (4.51) 0.76 277.2 (2.03) 279.4 (5.38) 0.50 278.6 (1.99) 279.0 (4.87) 0.89

† Ymax, maximum biomass (Mg ha–1); tm, DOY when the crop growth rate is maximized; te, DOY when biomass is maximized.
‡ Standard errors in parentheses.
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it stands out that there is a concentration of points at low fitted 
values, which indicates overprediction (i.e., bias) at low values 
(Fig. 5), suggesting that a different function might work better.

Revise the mean model: We selected a modified beta 
growth function (see Eq. [2.11] in Supplementary Table S2), 
which was designed to capture more efficiently the initial 
growth phase at the cost of two extra parameters. Equation 
[2.11] allows an offset in the x axis (tb) orientation and an offset 
in the y axis orientation (Yb). We did not fit these parameters 
but rather kept them fixed; tb is the planting date at Day of the 
Year (DOY) 141 and Yb is the biomass weight at sowing, which 
is zero. As a first step, the fitting process was repeated as above, 

with starting values determined visually this time as 30 for 
Ymax, 240 for te, and 280 for tm (Fig. 4). Apparent convergence 
was obtained for all the experiment units. The final revised 
mean model was fitted to the entire data set, but at this step the 
model included the effect of crop type, agronomic input level, 
and the interaction for each parameter.

Check model assumptions: Visual inspection of the standard-
ized residuals (Fig. 5) was used to evaluate the assumptions of 
appropriate mean function and normally distributed errors with 
homogeneous variance. Figure 5 indicates that Eq. [2.11] (modi-
fied beta growth function) alleviated the overprediction at low 
values, but this bias did not disappear completely. The major argu-
ment for choosing Eq. [2.11] over Eq. [2.5] is that convergence was 
achieved for all experimental units (24 vs. only 10).

Model variance homogeneity: The residual variance was mod-
eled with a power function, and different power parameters were 
used for the three crops. This function is s2(v) = s2|v|2q, where v is 
the variance covariate (the fitted values in this case) and q depends 
on the crop (0.7, 0.86, and 0.89 for maize, fiber sorghum, and 
sweet sorghum, respectively). More details about the fitting pro-
cess can be obtained from the supplemental material.

Determine parameter estimates and standard errors: 
Table 2 provides the estimates and the corresponding standard 
errors of the model. These values are final and account for mod-
eling the residual variance.

Calculate statistical descriptors: Given that the biomass 
had low initial values and high values at the end of the season 
(Fig. 6), the use of the average RMSE (here 4.1 Mg ha–1) is 
misleading because it overestimates the error at the initial 
stages (biomass of 0–10 Mg ha–1), and it underestimates it at 
advanced stages (biomass of 30–40 Mg ha–1). Therefore, differ-
ent RMSE values were calculated for different biomass ranges 
(see Fig. 6). Regarding the relative indices (no units), use of the 
modeling efficiency (viz. 0.88, scale 0–1) is somewhat better 
than the RMSE in this case, but it still expresses the average 
model performance across the sample and therefore is not 
recommended.

Fig. 6. Observed vs. predicted biomass values. The root mean squared 
error (RMSE) was used as a measure of the goodness of fit. Given that 
the variability is increasing along with the biomass weight, three RMSE 
values were calculated for biomass ranges indicated by the vertical 
dashed lines (0–10, 10–20, and >20 Mg ha–1).

Fig. 7. Observed data and fit for the final model for three crops: maize (M), fiber sorghum (F), and sweet sorghum (S). Vertical bars indicate confidence 
intervals of observations.
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Interpret results and draw conclusions: According to 
the model predictions, the maximum estimated biomass was 
obtained for sweet sorghum under high inputs, and this crop 
reached a total of 43 Mg ha–1on DOY 279 (Fig. 7; Table 2). At 
the other extreme, maize reached its maximum biomass under 
high inputs of 21 Mg ha–1 on DOY 248. The maximum bio-
mass (Ymax) and the time when it was reached (te) were signifi-
cantly affected by the crop ´ input interaction (see supplemen-
tal materials). In practice, the most meaningful result might 
be in accurately representing treatment differences and their 
significance level (P value) and having a model capable of pro-
ducing robust predictions within the range of observed values 
(i.e., interpolation) and, with more caution, outside the range 
of observed values (i.e., extrapolation).

SUMMARY
The most critical step that distinguishes nonlinear models 

from linear models is that the choice of the main function is 
critical and this can be difficult without appropriate guidance. 
We have presented an extensive library of nonlinear functions 
(77 equations with the associated parameter definitions) and 
typical applications that, we hope, will make the task of choos-
ing candidate models easier. Our review of nonlinear equations 
is incomplete because there are countless numbers of potential 
functions (Ratkowsky, 1990) to be used and ad hoc modifica-
tions. We have also contributed a suggested work flow (Fig. 1) 
that should provide the necessary structure to avoid common 
errors in the use of nonlinear regression models.
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