Applications of In-season Imagery for Crop Management

SE Regional Fruit and Vegetable Conference

Leo Bastos Assist. Prof. Integrative Precision Ag

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Why use imagery during the season?

- Bird-eye view of a field

- Identify stresses early on and
1. Provide <u>location</u> for directed scouting
2. Provide <u>information</u> for variable rate in-season management

Case Study #1

Early stress detection and directed scouting with satellite imagery

Grower-reported issue

- Cotton grower in SE Georgia
- Crop was looking stressed in some parts of the field

Pulled satellite imagery
 to inspect problematic areas

Grower-reported issue

Case Study #2

In-season variable rate nitrogen management with satellite imagery

Why variable rate N?

Crop vigor

Sensor

Variable rate N components: **Sensor** Sensor <u>bands</u>

Variable rate N components: **Sensor** Bands and plant characteristics

Sample #	Chl Content (mg/m2)
1	669
2	565
3	381
4	368
5	347
6	309
7	286
8	269
9	161
10	126
11	156
12	98
13	73
14	25
15	11
16	25
17	5
18	12
19	4
20	4

Variable rate N components: **Sensor** Bands and plant characteristics

- Visible region (400-700 nm): related to leaf pigment
- NIR region (800-1200 nm): related to leaf <u>structure/biomass</u>
 To assess if a crop is healthy, combine **both** in a vegetation index.

Algorithm

Variable rate nitrogen components: Algorithm_____

What if on same field we have different X varieties X planting dates X pre-plant nitrogen rates

Even at similar N nutrition, different **varieties, planting dates, etc.** will look different to a sensor.

How to fix these issues and ensure that differences are <u>only due to N status</u>?

Variable rate nitrogen components: **Algorithm** Normalizing with an in-field reference

Have a **high-N reference** strip in the field for each genetic and management

 $\frac{\text{Sufficiency Index (SI)}}{\text{SI}} = \frac{VI_{field}}{VI_{reference}}$

For example,

SI = 0.35 = 0.570.61

By normalizing with a high-N reference, the effects of <u>VI</u>, <u>growth stage</u>, and <u>variety</u> are neutralized

Variable rate nitrogen components: Algorithm Algorithm types: 2. <u>SI</u>-based

Holland-Schepers algorithm

$$N_{app} = (EONR - N_{credits}) \times \sqrt{\frac{(1 - SI)}{\Delta SI}}$$

N_{app} = sensor-recommended N rate (lbs/ac)
EONR = economic optimum N rate (lbs/ac)
N_{credits} = pre-applied fert, irrigation water N, legume (lbs/ac)
SI = sufficiency index

 Δ SI = 0.3

Variable rate nitrogen components: Algorithm Entire workflow from imagery to Rx

Variable rate nitrogen in practice: University of Nebraska Project SENSE

Summary

Thanks! lmbastos@uga.edu

- In-season imagery can be used to
 - 1. Identify problematic areas for scouting
 - 2. Derive in-season variable rate recommendations
- Current research at UGA developing and testing <u>variable rate</u> <u>algorithms</u> under different conditions (<u>tillage</u>, <u>cover cropping</u>) for <u>different crops</u>
- In future, have an **online dashboard** where GA producers can automatically pull satellite data and <u>create variable rate N</u> <u>prescriptions</u> for their fields